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A numerical method for solving problems in which a moving surface of disconti-
nuity separates regions of incompressible flow is presented. The method developed
is notable in that it does not introduce any artificial smoothing of the change in fluid
properties across the surface of discontinuity. This results in an increase in accuracy
relative to methods which introduce smoothing effects. The method was also shown
to be fairly versatile; problems describing a free surface, an immiscible fluid inter-
face, and a premixed flame discontinuity were solved. There is a limitation, however,
in that the method appears to be most suitable for application to inviscid problems.
The reason for this limitation and possible approaches toward resolving it are dis-
cussed. (© 1999 Academic Press

INTRODUCTION

Many physical problems can be mathematically treated as two incompressible fluids
arated by a moving surface of discontinuity. Typical examples include the flow of immisci
fluids, the flow of liquid—gas mixtures, premixed flame propagation, and vortex sheet
namics, among others. Interest stemming from practical applications, such as ocean v
and sailing vessels, engine sprays and burning, and even plastic extrusion, has moti
a significant effort to numerically simulate these problems. Due to complexities resul
from the moving surface of discontinuity, however, numerical simulation techniques h
been much slower to develop than those for single fluid incompressible flow.

Recently, however, a class of methods, which we shall refer to as “continuum” meth
has been demonstrated to be both robust and versatile in solving these problems [6—
23, 25]. Simulations have been presented which include a broad range of physical ef
such as both density and viscosity variation across the discontinuity, surface tension, h
convoluted surface geometries, and in some cases even evaporation. These simul
have provided some excellent qualitative insight into two-fluid problems. The quantita
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accuracy of these methods, however, may be somewhat limited for reasons which are
clear in the following paragraph.

The commonality in the continuum methods discussed above is their treatment of the
continuous change in properties between the two fluids. The treatment used is to smoo
discontinuous change over some artificial finite width, usually around 4—6 computatic
grid cells. This allows the simplification that conventional finite difference techniques |
signed for smoothly varying fluid properties can be used, which in turn leads to robust
versatile schemes. The difficulty is that the smoothing of the discontinuity causes errt
the simulations with a magnitude proportional to the smoothing width relative to the sc
of the flow being resolved; accurate results are obtained when the smoothing width is
relative to the flow scale. For a typical resolution of a wavelength of the flow, say 24 ¢
cells/wavelength, the transition width (4—-6 computational cells) is only moderately sme
than the flow scale, approximately 20%, and thus the simulations can be fairly inaccu
Furthermore, since the transition width is proportional to the grid size, this error decre
only linearly as the grid size is decreased. Thus, these methods are only first-order acc
in space.

The goal of this work was to be able to incorporate a range of physical effects compar
to that of a “continuum” method but with increased accuracy relative to these methods
achieve this, we have developed a method which maintains the discontinuous prope
of the solution; no artificial smoothing at the discontinuity is introduced. Consequen
second-order spatial accuracy can be obtained, as we demonstrate in the paper. We
to clarify, however, that although inviscid problems can be solved readily, applicatior
viscous problems requires further study. Thus, although the method is more accurate th:
continuum method for inviscid problems, it does not achieve the same degree of versa
In this paper, we describe this method and further detail its characteristics.

In the first section following the Introduction, the mathematical and physical problen
defined in the most general form which is currently solvable. This definition gives an it
of the effects which can currently be simulated with this method.

The next three sections describe the numerical method. We begin by summarizing
numerical algorithm used to solve the incompressible flow equations. This algorithm
developed by Belowt al. [4] and has been shown to be efficient and accurate for t
computation of both viscous and inviscid, unsteady, incompressible flows.

The fifth section describes the modifications made to the algorithm to incorporate
surface of discontinuity. The treatment of the discontinuity is unique in that, as mentio
above, no artificial smoothing of the change in properties across the discontinuity is ir
duced.

The last section in the statement of the numerical method describes the algorithm use
tracking the position of the discontinuity in time. The algorithm used is a level-set appro
similar to that originally proposed by Osher and Sethian [18]. It was chosen over a volu
of-fluid [14, 20] approach or a “front-tracking” [25, 26] approach, both of which can al
be used to give accurate results, because the update of the discontinuity position «
be performed in a manner similar to that used for the solution of the incompressible 1
equations. As we show, this made the implementation of the level-set approach relat
easy. We did, however, have a couple of difficulties in achieving accurate results using
level-set approach. These difficulties and how they were overcome are also describec

With the description of the algorithm complete, the accuracy and efficiency of the resul
scheme are verified with test cases originally used by Baket. [2]. These are a free
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surface wave and an interfacial wave which propagate with a stationary shape. The re
show that for a given mesh size the magnitude of the error is significantly smaller t
that expected from a continuum method for inviscid flows and that second-order sp:
accuracy is achievable. An application to premixed flames is also presented with se
simulations to further demonstrate the potential of this method.

PROBLEM DEFINITION

The class of problems that the numerical algorithm is intended for is the flow of t
incompressible fluids of constant but different densities and viscosities which are sepal
by a moving discontinuity surface. A straightforward example of a physical problem wh
can be represented in this manner is the flow of two immiscible fluids such as oil and w
To describe these flows mathematically, equations governing the incompressible flow of
fluids must be given. Additionally, conditions which describe the relationship between
flow conditions on either side of the discontinuity and the motion of the discontinuity m
be provided. In the following, we present the governing equations and surface condit
in the most general form which can be solved using our numerical algorithm.

The incompressible Navier—Stokes equations describe the motion of the flow. The for
lation of these equations allows for two fluids of constant but different density and visco
and also includes the effects of gravity. In vector form, these equations are

0
ow 0 ar ds
diag[0 1, 1] - —+8—X+a—3—a—x+@+ 0 s Q)
—pk/Fr

wherex andy are the horizontal and vertical coordinates, respectivéthe time variable;
andw is vector notation for the flow variables

p
W=4q pokuU ,, (2)
PkV

wherep, u, andv are the pressure, horizontal velocity, and vertical velocity, anid the
constant density of fluid 1 or 2. In Eq. (¥)andg are the Euler flux vectors

oxu PKV
f=4 pu2+p ¢ g= PkUv , 3)
poxUv pv+p

andr ands are the viscous flux vectors

0 0
r=¢ Txx p, S=4 Txy (4)
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whereuy is the viscosity of fluid 1 or 2. In Eq. (1), diag[0, 1, 1] is the identity matrix wit
a zero first diagonal entry. This matrix removes the time derivative of the pressure t
from the continuity equation in this vector notation. The above equations are made nc
mensional byU and L, the characteristic velocity and length of the system, angby
and u1, the density and viscosity of the more dense of the two fluids=Rd. /v, is
the Reynolds number, whevds the kinematic viscosity. F£ U2/(gL) is the square of the
Froude number representing the force of gravity in the negatdieection, wheray is the
acceleration of gravity.

To complete the description of the problem, jump conditions across the discontinuity
face and the velocity at which the surface moves must be specified. Currently, the algor
can solve problems in which the jump conditions are a function of the flow properties
both sides of the surface and the normal and curvature of the surface. Problems in v
the jump conditions are also a function of the spatial derivatives of the flow variables at
surface as yet cannot be solved. This is important to recognize because in many vis
problems the jump conditiorare a function of the spatial flow derivatives at the discon
tinuity. For example, the jump conditions for the viscous flow of two immiscible fluic
with surface tension depend on the viscous stress tensor evaluated at the discontinuit
[7]). The viscous stress tensor is a function of the spatial flow derivatives, and thus
problem cannot be solved. The inviscid jump conditions, however, are functions of ¢
the flow variables and the curvature of the discontinuity through the surface tension,
thus immiscible fluid flow problems with surface tension and inviscid jump conditio
can be solved. The reason for this limitation and possible methods around it are disct
later.

Similar to the jump conditions, the normal velocity of the surface can be specifiec
a function of the curvature of the surface as well as the flow properties at the surfac
detailed description of the jump conditions and surface velocity as well as a descriptio
the physical domain and boundary conditions are given in the discussion of each phy
problem simulated.

NUMERICAL ALGORITHM

The numerical algorithm used to solve the incompressible flow equations was origin
presented in [4]. This algorithmis a cell-centered, finite-volume method which was desic
for constant density and viscosity incompressible flows. In the following, a summary
the discretization of the spatial and temporal derivatives in Eg. (1) and the method ust
solve the resulting discretized equations is presented. Readers interested in a more de
description of the algorithm are referred to [5].

The discretization of the spatial derivatives in the algorithm are for a curvilinear, structt
mesh. For simplicity, here we only discuss the effective discretization that this results i
an equally spaced Cartesian mesh. In this case, the discretization of the Euler terms re
to a standard central difference formula. To avoid the odd—even decoupling which can c
with central differences, third-order artificial dissipation is added to the discretization. -
dissipation added to avoid decoupling in thdirection is of the form. /32Ay3[9*w/dy*],
where is an O(1) scaling constant which is discussed in [Bly is the grid spacing in
the y-direction, and the fourth derivative is evaluated using a standard five-point cer
difference. A corresponding term is added to avoid odd—even decouplingxndinection.
The discretization of the viscous terms on a Cartesian mesh is equivalent to a ce
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difference formula for a second derivative. The above discretizations give second-c
accuracy in space. It is important to note for discussion later that discretization of bott
Euler and viscous terms requires only a three-point stencil in each coordinate directic
evaluate the derivatives.

To discretize the solution in time, a second-order accurate, implicit scheme is used.
results in discretized governing equations of the form

(3wt — 4wl +wij]

diag[0 1, 1] - L] .

+R (w{‘jl) =0, (6)

where the first term in the equation is the time derivative Bnid a shorthand notation
denoting the evaluation as discussed above of the spatial derivatives of Eq. (1) at the
i, j. At is the implicit time step, and the superscriptsvomepresent the time level of the
solution. This scheme is implicit because the evaluation of the spatial derivatiRes mt
time leveln + 1. Given the solution at two previous time levelg, andw"-1, the above
equations must be solved faf'+! to advance the solution in time. This approach has tw
advantages. The first is that the scheme is A-stable [10] and therefore the magnifttde ¢
is not limited by a stability restriction but only by the required accuracy. The second is t
the update of the solution in time satisfies the discretized form of the continuity equa
without requiring any special treatment to enforce this constraint such as in a projec
method (see [3]). On the other hand, Eq. (6) \Mﬁl is spatially coupled through the
operatoR and is also nonlinear. To make this method practical, an efficient way of solv
these equations is necessary.

To find the solution to Eq. (6), we transform to a problem of evolving an unsteady sys
of equations to steady state in a fictitious time or “pseudo-time.” This transformatior
accomplished using the following equations which define the pseudo-time evolution

[Bwi j — 4w} +wij]

E(wi,j) = diag[0 1, 1] - AL +Rw; j) (7)
a;\t':j +diag['2, 1, 1]- Ew; ;) =0 (8)

E(w; ;) is the error in the solution to Eq. (6) whemw ; is substituted fowi’fj*l, risa
constant which will be discussed shortly, arids the pseudo-time variable. If this set of
equations for the evolution &¥; j; can be evolved to a steady soluti@iw; ;) will be zero
by Eqg. (8) and thus we will have found the solut'wﬁfl.

In the simplified case in which in Eqg. (7) the implicit time derivative terms&iare
neglected, the pseudo-time evolution equations reduce to those introduced by Chori
for finding steady solutions in viscous incompressible flow. Analysis of these equations
the inviscid case by Rizzi and Eriksson [21] has shown that the equations are hyperbo
nature, and therefore an explicit time stepping scheme appropriate for hyperbolic sys
can be used to evolve to steady state. In [21] for example, a three-stage Runge—Kutta sc
is used with a time step limit based on the wave speeds of the hyperbolic system.
analysis of Rizzi and Eriksson also suggested Hat max(0.1, u? + v?) is an optimum
choice for achieving the maximum convergence rate of the explicit scheme to steady
in the pseudo-time evolution. For the viscous case, as originally demonstrated by Ch
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an explicit scheme can also be used with the only modification being the adjustment o
allowable time step of the explicit pseudo-time scheme to account for the viscous ternr
discussion of the time-stepping limit in the viscous case can be found in [5, 9].

The implicit time derivative terms i do not change the approach originally propose
by Chorin; an explicit time stepping scheme is used to find the steady-state solution i
which in this case is the solution to Eq. (6). The second two terms in the implicit tir
derivative,—4w{fj/At andwi”jl/At, are constant during the pseudo-time evolution ar
thus have no effect on the stability of the explicit pseudo-time stepping. The first tern
the implicit time derivative, &; j /2At, is unsteady in* and can affect the stability of the
explicit scheme. To incorporate this term into the pseudo-time evolution with the minim
impact on the stability limit of the explicit scheme, a point-implicit formulation is use
The following equations demonstrate the point-implicit approach in the simplified cas
a one-step explicit update of the solution. The extension to a multistage or Runge—k
type scheme is trivial. We begin by rewriting Eq. (8) as

3Wi’j 3Wi,j
at* 2At
whereE*(w; j) is the sum of the spatial derivatives and the constant terms in the impl

time derivative. In the simplified case of a one-stage explicit scheme, this is discretize
pseudo-time as

+diag[0 1, 1] - +E*(w; ) =0, (10)

Wit e -t

L L i i * yat”
— dr +diag[0, 1,1] - AL +E (Wi.j) =0, (12)
wheredt* is the explicit time step in pseudo-time. The updateviocan then be solved
iteratively from the above algebraic equation. Because the unsteady term in the imy
time derivative is evaluated it + dt*, the point-implicit formulation minimally affects the
stability of the explicit scheme. This is shown by the analysis given in [5].

Finally, we note that the evolution to steady state in pseudo-time must be performe
each implicit time step update of the solution, and thus the time required for the er
calculation is strongly affected by the time required to reach convergence to steady stz
pseudo-time. Since itis not necessary to be time accurate in pseudo-time, several opti
tion techniques designed for accelerating the convergence to steady state are used.
include an explicit time-stepping scheme designed for large pseudo-time steps descrik
[5], local time stepping in which each cell is advanced at its maximum stable pseudo-1
step rather than a uniform time step, and multigrid which is described for a single fluid f
in [5].

DISCONTINUITY SURFACE

The algorithm described above is for incompressible flows with constant density
viscosity. To solve problems with two fluids, we must account for the surface of discontini
between the two fluids. As discussed in the Introduction, we have avoided using a contin
formulation of the discontinuity because of the first-order spatial error which can arise \
this approach. Our approach treats the surface of discontinuity as a moving boundary v
subdivides the numerical domain into two separate computational regions, one for «
fluid. The computational region that any given numerical cell belongs to is determinec
which side of the boundary the cell center lies on. Figure 1 shows a simple schemat
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FIG. 1. Subdivision of the computational domain into two distinct regions.

such a division. In each computational region, the idea is to solve the incompressible
equations with constant density and viscosity in a manner which is consistent with the |
conditions applied at the surface of discontinuity.

The implementation of this approach is described in the following. In this section,
describe the modifications which were made to the incompressible flow algorithm to al
for the moving internal boundary and jump conditions. This description is presented ur
the assumption that the position of the discontinuity surface intime, as well as the norma
curvature along the surface, is known. In the following section, the method for determir
the position, normal, and curvature of the discontinuity surface are discussed.

To illustrate the modifications made to the incompressible flow algorithm, we be
by giving a step-by-step explanation of the spatial finite differencing used to form
y-derivatives for a column of cell centers which crosses the discontinuity. The explana
uses the schematic shown in Fig. 2, which is a typical one-dimensional pressure pr
taken along a column of cell centers for some fiked/e again assume that the grid is ar
equally spaced Cartesian mesh, although the procedure can easily be extended to curv
coordinates. In this example profile, the discontinuity is between dels) (and {, 6).
At the point at which the surface of discontinuity is crossegdthere is a discontinuity in
pressure, the magnitude of which is governed by the jump conditions describing the phy
problem. As discussed above, this location is treated as a boundary to two separate re
of incompressible flow. Accordingly, the finite differencing on both sides of the bound:
must be modified.

Because only a three-point stencil is needed in each coordinate direction to eva
the Euler and viscous derivatives, the finite differences for these terms only need t

Fluid 1 Fluid 2

'
f
'

A 3 2 10Xl 2 3 4 5 6
(y—y(,«,5))/Ay=j—5

FIG. 2. One-dimensional profile of the pressure taken along a column of cell centers which crosses
discontinuity. The solid circles are the values at the solution at the cell centers.
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modified at cells which are immediately adjacent to the surface of discontinuity. In Fig
these are cellsi {5) and (, 6). For cells which are one or more cell centers away fro
the discontinuity, the standard finite difference stencil can be used, so no modification
required to evaluate the Euler and viscous derivatives.

To evaluate they-derivatives for the points adjacent to the discontinuity, the gene
approach is to define a pair of values at the discontinuity which satisfies the jump condit
and then evaluate the spatial derivatives based on these values. In choosing the val
the discontinuity, however, we must ensure that information can be transmitted throug|
discontinuity in both directions. For example, if at a given time step we change the pres
at the far-field boundary of fluid 1, this information must be transmitted by the pseudo-t
evolution throughout fluid 1 and across the discontinuity to fluid 2 or vice versa in orde
achieve a converged solution for the next time step. To ensure that this can occur, w
the following procedure.

First, we use third-order extrapolations from both sides of the discontinuity to determ
values at the surface of discontinuity,

1 1 2

o - %Wm (G 2Wiat ths (12)
1- 02— 2- 06—

S = #Wi,s —1- )@= xx)wi7+ wwi,ﬁa (13)

wheres; ands, are the values at the surface of discontinuity extrapolated from flui
1 and 2, respectively. The location of these values is shown in Fig. 3. The notafion
used in this figure is equivalent to,[@, 0] -s;. 5 gives an estimate of the values at the
discontinuity which is completely based on the solution in fluid 1, whiles solely based
on the solution in fluid 2. Due to the error inherent in the extrapolation and the error in
estimate fow"*! present during the pseudo-time evolution, the values at the discontint
usually do not satisfy the jump conditions. The next step in the procedure is to use
information to define a pair of values at the discontinuity which does satisfy the ju
conditions.

To do this, we begin by using the jump conditions axntb estimate an additional value at
the surface in fluid 1s; jump. The details of determining j,mp can vary somewhat depend-
ing on the exact form of the jump conditions. This procedure will be made more spec
when we examine individual problems;. ands, jymp are not equal becausg ands, do
not satisfy the jump conditions. We then choose a single value &oamd's, j,mp based
on the direction which information is propagated by the pseudo-time evolution. Remen
that the pseudo-time evolution equations are hyperbolic in nature; therefore in the dire
normal to the discontinuity three wave speeds and three associated characteristic var
can be determined. A description of the linearization of the pseudo-time equations us

p

b < D5,
Fluid 1 Fluid 2

psz . L

4 3 2 1 0XI 2 3 4 35 6
Y=Yus)/Ay=j-5

FIG. 3. One-dimensional pressure profile showing the location of the vajumwds,.
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determine these variables and wave speeds can be found in [5, 21] in their discussi
nonreflecting far-field boundary conditions. If the wave propagation direction for a chat
teristic variable is from fluid 1 toward fluid 2, that variable is estimated usindthe wave
propagates in the opposite direction, the characteristic variable is estimated, fiiam
This determines a single vector of flow valugsin fluid 1 at the discontinuity. Values in
fluid 2 at the discontinuitys,, are then estimated usirgg and the jump conditions. This
method defines a pair of values which satisfy the jump conditions, and it also transi
information through the discontinuity in a manner consistent with the wave propagal
direction of the pseudo-time evolution.

The above linearization of the pseudo-time equations could just as easily have |
performed in fluid 2. We found that both the convergence rate to steady state in pseudo
and the final converged solution were insensitive to whether we performed the linearizz
in fluid 1 or fluid 2.

The final step is to evaluate tigedirection Euler and viscous derivatives at the pointS)Y
and {, 6) based on the valuess ands,. To evaluate these derivatives, we first extrapola
the solution to dummy values

21— x) 3(x — 1) 6
dig = —Wj3+ Wi 4+ 14
0= e MR aT et e o 14
2x 3x 6
d e = A - 15
i,5 S_XW|,8 2_XWI’7+(2_X)(3_X)§2’ ( )

whered is used to denote a dummy value. The locations of the dummy values are shov
Fig. 4. We then use a standard central difference formula with the dummy values to eval
the derivatives at the adjacent points. This approach is well defined evenyberomes
very close to 0 or 1 and is second-order accurate for the Euler terms and first-order acc
for the viscous terms. A central difference at point¥) using the dummy valuel; ¢, is
equivalent to evaluating the derivative using the values at pain®) @nd {, 4) with s;.
Extrapolating to the dummy value and then using a central difference has some advan
which will become clear in the following.

We also need to discuss the evaluation of the artificial dissipation. The fourth-order de
tive needed for the artificial dissipation is calculated by subtracting third-order derivati
found at a location midway between cell centers,

9w 33w 93w

Oy iy Y a2 Y ijo12
p 3 o(’pdl,a
Fluid 1 Fluid 2

pdi,s !

4 3 2 10X 2 3 4 35 6
Y =Yas)/Ay=Jj-35

FIG. 4. One-dimensional pressure profile showing the location of the dummy values.
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FIG.5. One-dimensional discontinuity geometry which causes difficulty.

The third-order derivatives at the midpoints are calculated with a four-point stencil:

Ay S5 =Wij2 — SWijr1+ SWij — Wi j-1. 17
Yol i+12
Near the discontinuity, calculation of the dissipation is modified by setting the third-or
derivative at the midpoint of the two cell centers bordering the discontinuity to zero. C
midpoint away in either direction, the dummy cell value is used in the formula for t
third-order derivative. This method is stable and adds at most a second-order correcti
the solution near the discontinuity.

The above procedure can be used in both coordinate directions to evaluatartlg
spatial derivatives near the discontinuity. However, for certain surface geometries, the a
approach may not work. Figure 5 shows an example of a surface geometry which ce
difficulty for evaluation of derivatives in the-direction. Along the horizontal row of cell
centers shown as crosses,there are only two cell centers in fluid 1 between intersectiol
with the discontinuity surface. For this row, the above procedure cannot be used to
the x-derivatives at the points adjacent to the discontinuity because a three-point sten
needed on both sides of the discontinuity. To avoid this difficulty, we combine the dum
values found from both coordinate directions to define a uniqgue dummy value for e
point adjacent to the discontinuity. For example, the dummy values at points such as (¢
(5, 5), (6, 5), and (7, 5) which cannot be approximated inxtdirection are determined
by using the above procedure in tigedirection. For dummy value locations that can b
approximated from both coordinate directions such as at (2, 4) in Fig. 5, we average
values approximated from each coordinate direction with the weighting

_ do4hlNn - (1, 0)[ +do 4[N, - (0, D

d 9
24 Ih - (1, O)[ + [N, - (0, 1]

(18)

whered; 4, andd, 4, are the values found using the above procedure in the horizor
and vertical directions, respectively, andn, are the normals to the discontinuity at the
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point at which the discontinuity was crossed in the horizontal or vertical direction. Thic
also shown in Fig. 5. By combining information from both directions, we can determin
dummy value for each point adjacent to the discontinuity which then can be used wi
central difference formula to evaluate the spatial derivatives at the adjacent points.

The above procedure for determining the dummy values was performed at the begir
of each multistage update of the solution in pseudo-time. The dummy values were
used during the multistage update to form the derivatives near the discontinuity. This c
pletes the description of the modifications used to evaluate the spatial derivatives nee
discontinuity.

In performing calculations with the above method, we found that due to the cha
in the finite difference stencil near the discontinuity, the estimate of the maximum ste
pseudo-time step predicted in [5] for constant density and viscosity flows had to be red
by approximately a factor of 2 at points adjacent to the discontinuity. Because a local t
stepping approach was used in which each cell was advanced at its maximum stable ps
time step, this restriction only affected the pseudo-time step taken at the cells adjace
the discontinuity.

By using the above procedure, the pseudo-time iteration converged to a solution w
evolution in real time was based on values at the discontinuity which satisfied the jt
conditions. Furthermore, by choosing values at the discontinuity in a manner consistent
the pseudo-time iteration, changes in the fluid properties on either side of the discontir
could be transmitted through the discontinuity. This allows the pseudo-time evolutiot
converge to a solution which satisfies the far-field boundary conditions and, as shown il
results, gives an accurate prediction of the unsteady evolution of the flow.

Some additional changes to the incompressible flow algorithm are needed when the
continuity moves across a cell center point. To describe these changes, we assume fc
that the discontinuity moves across a cell center between multistage updates of the fl
pseudo-time. The method we use to determine the discontinuity movement is describ
the next section. When the discontinuity moves across a cell center, we make the folloy
changes which are consistent with the philosophy of treating the discontinuity as a mo
boundary separating two distinct computational regions. First, the density and viscc
values of the cell which was crossed are changed to values corresponding to its new
putational region. Second, the estimate for the solution at timeeyel, w; j, is changed
tod; j, the dummy value at the cell before it was crossed by the discontinuity. The rea
for this will be made clear shortly. Third, the evaluation of the implicit time derivative
modified to provide an estimate of the time derivative in the cell's new computational regi
The ne\iv estimate is based on the dummy values for that point at previous timedﬁlieps
andd';",

oW j _ [3Wi,j - 4d|nJ + dln]_l] (19)
ot 2At '

Figure 6 shows typicabv profiles at three implicit time levels with a moving discontinuity
to clarify the logic for this approach. By using the dummy values, an accurate estimat
the solution and the time derivative in the cell’s new computational region is obtained.

After the above changes are made, the pseudo-time evolution is continued until a
verged solution fow"*+* is obtained. This approach can be used as long as the discontin
does not cross more than one cell every two implicit time steps. If the interface moves fz
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FIG. 6. pv profiles at three consecutive time levels.

than this, the same general approach can be used, but we must extrapolate the solu
previous time steps more than one cell across the interface to form the time derivative

Given the movement of the discontinuity, the above approach can be used to find acc
solutions for the evolution of the incompressible flow with fairly general jump conditior
However, there were some difficulties with this approach. One such difficulty is that
discontinuities which are convoluted on the scale of the grid resolution, there may not
large enough stencil of pointséithercoordinate direction to extrapolate the dummy value:
A circle of two cell diameter is a simple example. In general, when this problem devel
it means that the grid resolution must be increased, although there are cases in whic
occurs independent of the grid resolution. An example is the merging of two nearly ple
surfaces. Independent of the grid resolution, the surfaces will eventually become c
enough together such that there are only two points across the gap between them, an
the dummmy values cannot be extrapolated. If this problem developed during a calculs
the calculation was aborted.

As discussed in the physical definition of the problem, another difficulty with the mett
is that the jump conditions cannot be a function of the spatial derivatives of the fi
variables at the discontinuity. The reason for this can now be made clear. In the proce
for determining the dummy values, a one-dimensional stencil of points is used to extrap
the values of the flow variables at the discontinuity (Eqg. (13)). To extrapolate value:
the spatial derivativesiw/dx and aw/dy, which are needed to evaluate viscous jum
conditions, a two-dimensional stencil of points is needed on both sides of the discontin
For even moderately convoluted discontinuity geometries relative to the numerical gri
becomes difficult to find a stencil of points for the extrapolation which results in bott
stable and accurate scheme. A possible extension of this method which avoids this prc
and the limitation discussed in the preceding paragraph is discussed under Conclusic

DETERMINATION OF THE POSITION OF THE DISCONTINUITY

To determine the evolution of the position of the discontinuity in time, we use a level
formulation [18]. In this formulation, a scalar fielgl(x, y), is defined such that the initial
position of the surface of discontinuity coincides with the zero level of the scalar field. T
position of the discontinuity is then tracked in time by updating the scalar field using
equation [18]

99

T + (U, v) - Vo = §V9g|. (20)
This equation propagates level surfacespofvith a velocity of (u, v) - n — S along the
normal to the level surface, whengs the normal. By setting the paramet&to zero, we
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can track a discontinuity which is passively convected by the flow. With a norgehe
surface actively propagates relative to the underlying flow. Most of the problems studie
the Results section involve only passive propagation of the discontinuity s8 thaero.
However, for the premixed flame problem presented in the Results a nddizerequired,
and therefore we must account for this term in the formulation.

If we can solve the above equation, the information needed for the treatment of
discontinuity is easily obtained frogh For example, along a column of cell centers, we ca
locate the discontinuity by checking for a change in sigg and then linearly interpolating
between the two cell centers to determine the zero point. To determine the normal at
point, we first calculate the normaldoat the cell center points adjacent to the discontinuity
These are calculated using a central difference of the formula

(Nx, Ny) = V¢ /IVe|. (21)

We then linearly interpolate between these values to determine the normal at the zero pc
¢. The curvature at the discontinuity point is obtained in a similar manner. This informat
is then used in the procedure of the preceding section to determine the dummy values

To solve Eq. (20) numerically, we must discretize the spatial and temporal derivati
Many successful spatial discretizations of this equation have been developed. We
the reader to [18, 28] for well-described examples. In this discussion, we focus on
time discretization of this equation. In order to provide updates of the position of |
discontinuity in time which are compatible with the time updates of the incompressi
flow, we use the same implicit time discretization as the incompressible flow algoritt
Similar to the incompressible flow equations, this results in coupled nonlinear equatior
the form

[3¢n+1 _ 4¢n + ¢nfl]
2At
Because the update of the position of the discontinuity depends on the update of the
variables throughu, v)"*1, and the update of the flow depends on the position of tf
discontinuity, the incompressible flow equations and Eq. (22) must be solved simt
neously. Fortunately, this can be easily accomplished in a pseudo-time iteration frame
by adding the following equations to the pseudo-time evolution:

[3¢ — 44" +¢" ]

+ (U, v)n+l . V¢n+1 — S|V¢n+1|- (22)

Ep(p, W) = AL + Ry (W, ¢) (23)
% + Eg(p,w) =0 (24)
Plt—o = 9" (25)

hereRy is a shorthand notation for the spatial derivative terms in Eq. (22). The evolutior
¢ int* is performed with the same explicit five-stage scheme asis used for the incompres
flow equations and also uses a point-implicit treatment of the time-derivative term. Si
the point-implicit treatment of these terms minimally affects the stability of an expli
scheme, these terms can be neglected in determining the allowable time step for the &>
update. In this case, the pseudo-time equationgfon t* is equivalent to the original

level-set evolution equation in The analysis of the local pseudo-time step limit is the
analogous to that found in [18, 28], to which, rather than restate the analysis here, we
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the reader. To achieve the maximum convergence rate to steady state, we again use
time stepping in which the maximum stable pseudo-time step is taken at each computat
cell.

The evolution ofp and the flow variables it was performed by alternating betweer
advancing the level-set functiontfiand advancing the flow variablestih This is permis-
sible because only the steady-state solution in pseudo-time is of interest; the details ¢
evolution are immaterial. The main reason that this was done was so that we could in
ment the changes required when the discontinuity crossed over cell centers. For exa
we advance in t* and then check for a change in sigrgilat any cell center. This indicates
that the cell center is now on the opposite side of the discontinuity since the discontinui
described by the zero level ¢f For the cells that were crossed we implement the requir
changes and then proceed to advance the flow variabléslimthis way, the flow variables
in each computational region are consistent with the position of the discontinuity dur
the update of the flow.

Another reason for alternating between the equations for the flow variables apdsfor
that the changes made when a cell center is crossed often lead to an increase in the
as defined by Eq. (6) at that cell and the neighboring cells. As such, it was desirabl
have most of the crossing of the cell centers occur early in the pseudo-time evolution. T
for the first evolution ofp a large number (four to six) of pseudo-time steps were taken
ensure that the discontinuity was fairly close to its final position even before the evolu
of the flow was begun.

For some implicit time steps, a situation arose in which the discontinuity would oscill
back and forth over a cell center, preventing the pseudo-time iteration from reachir
converged solution. By using an alternating approach to the advancemgatnofw, we
were able to cope with this problem. When any cell center changed signs more than t\
we simply stopped the update ¢in pseudo-time and continued the evolution for the flo
variables. Since, as discussed in the preceding paragraph, the discontinuity is fairly clc
its final position even after the very first updatepothis should not lead to a very significant
error for that time step. For the calculations we performed, this problem occurred at
most once every 100 implicit time steps.

The final reason for alternating between the evolution for the flow variables and
evolution forg is that the amount of work spent on each could be controlled. In performi
the calculations, we found that we could reduce the frequency of updatgsagtiout
adversely affecting the rate of convergence to steady state. We also found that the mul
acceleration technique used to accelerate the convergence of the flow equations was
effective on the equation fap. As such, for the calculations one explicit updatepoh
t* was performed every 5-10 multigrid updates of the flow equations. A discussion of
multigrid method used for the flow equations is given in the Appendix.

In implementing the above approach, we determined that independent of the ch
spatial discretization scheme, only a spatially first-order accurate prediction of the mc
of the discontinuity was obtained. It was subsequently determined that the first-order ¢
arises because of the nature of the solutions near the discontinuity. Consider curve
Fig. 7, which is a typical profile of the normal velocity of the scalar field evaluated alo
a column of cell centers which crosses the discontinuity. For all of the problems stud
the normal velocity of the scalar field w&’ continuous but no€* continuous across
the discontinuity. This is shown by curve 1. An update of the scalar field based on a |
evaluation of the scalar velocity at each cell center results in underprediction of the
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FIG.7. Profile of the normal velocity of the scalar field evaluated along a column of cell centers which cros
the discontinuity.

level velocity by an amount proportional to the grid size and thus is first-order accur
This is shown by curve 2. To gain higher-order accuracy, at the points next to the surfac
average the local scalar velocity with the scalar velocity calculated with the dummy val
This results in curve 3 shown in Fig. 7, which approximates the discontinuity velocity w
second-order accuracy. This problem was not observed in “continuum” approaches w
used level sets [7, 23] because the discontinuity in the slope of the scalar velocity is
accurately resolved by these methods.

There was one more modification needed to obtain accurate results using the leve
equation. Because of the nonsmooth nature of the scalar normal velocity shown in Fi
time integration of Eq. (20) caused thefield in the local area aroungl=0 to become
convoluted on the scale of the grid resolution. An example of this is shown in Fig. 8, wh

FIG. 8. One-dimensional profile @f versusy showing the convolution af aroundg = 0.
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is a one-dimensional profile @f versusy. The rapid change in slope acragss- 0 shown

in the figure eventually destroyed the accuracy of the time integratiah fBussmaret al.
observed a similar effect [23]. To eliminate the problem, they proposed thateinitialized
after each time update of Eq. (20) with a method which maintains the position of the :
level. This is permissible since only the position of the zero level isf of importance. To
test their method, we initializeg on a 1x 1 square as

{ 1.1(y + 0.01sin27x) — 0.5) y>0.5—0.01sin27Xx) (26)

0.9(y + 0.01sin27x) — 0.5) y <0.5— 0.01siM27x)

such that the zero level was a small amplitude sine wave and there was a discontinu
slope ofg across the zero level. Applying the reinitialization procedure of Sus&nhah
to this problem we found that the discontinuity in slope acgpss0 was eliminated. How-
ever, we also found that the reinitialization process caused the amplitude of the zero
sine wave to decay. At full convergence, the amplitude of the sine wave decayed to :
Sussmaret al. have recognized this problem and proposed an improved method whic
described briefly in [24]. Since the improved method was not available at the time of
work, we developed an alternative approach which is described in the following.

We seek a reinitialization fop which defines a smooth slope through=0 without
changing the location of the zero level. To ensure that the position of the zero level is
changed, we fix the values ¢fat the points adjacent to the zero level during the reinitia
ization procedure. Since these points determine a gradieit &@ross the zero level, the
reinitialization must extrapolate this gradient into the outer field to define a srodihe
following equations are used to accomplish this task:

09i |

9 = sign(¢o.i. ) (Wi.j — Vi jl) (27)
éi.jle=0 = Poii.j (28)
di.j = Poiij fori, j = point adjacent to zero level (29)
i , Vi j
DALY B L )
9t Slgr(¢0,|,1)(€+|v¢i’j| ’»”l,]) (30)
Vi.jle=0 = Yo.i.j = |V, jl (31)
Vij =1voi; fori, j = pointadjacent to zero level. (32)

Equations (27)—(29) are designed to find a solutiomfarhich has a magnitude of gradient
equal toyr at every point and also is continuous with the values specifiegl &ithe points
adjacent to the zero level. Equation (27) is a maodification of the equation proposed in |
When this equation reaches steady state, the magnitude of the gradiertvatuated at
any location is equal tg at that location. Equation (28) states that the initial conditior
for ¢ in the reinitialization procedure are given by the solutiongdrom the last implicit
time step which is denoted &g; ;. Equation (29) is a boundary condition specified at th
points adjacent to the zero level. This condition is applied so that the reinitiglipedses
through the values adjacent to the discontinuity, but the positign=00 does not change
during the reinitialization.

The equations fory are designed to extrapolate into the outer field the magnitude
the gradient inp determined by the values gfat the points adjacent to the discontinuity
Equation (30) is a convective equation forwhich propagates the values specifiedfor
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at the points adjacent to the zero level into the outer field. Equation (31) gives the in
conditions fory which are determined fronfiVeo; j|, and Eq. (32) fixes the boundary
values foryr at the points adjacent to the zero level. It is these values which are extrapol:
into the outer field. In Eq. (30, is a constant used to avoid division by zero errors at loc
maximum or minimum of. This was taken as 0.@lx.

The spatial discretization of these equations is similar to the first order scheme give
[23]. The discretizations in thg-directions are defined by the following equations. Thi
discretization in the-direction is analogous:

S = sign(¢o,i.j)
a=s(ij—¢ij-1/Ay
b= —s(¢ij+1— ¢ij)/Ay (33)

C=ij— ¥ij-1/Ay
d = Yij1— ¥ij)/Ay

) agﬂ = smax(a, 0)
ifa>b My
- =C
” (34)
Wi _ _g max(b, 0)
ifa<b aiy .
- =d

In regions without local extrema, this discretization is a first-order upwind scheme be
on the direction of the signed normal, sigg) V¢ /|Ve|. The first-order scheme is choser
for two reasons. First, its diffusive properties help to smaftiihe second reason is that
with the above scheme, the valuesyaf; ; calculated at the points adjacent to the dis
continuity are completely determined by the valueg @t those points. This is important
because it ensures that the reinitialized solutiogfaill smoothly pass through the values
at the adjacent points. This can be made clear by examining a one-dimensional exal
Giventhe valueg;, ¢, , ¢1, andg, , where the superscripts indicate the sign of the valu
and the subscripts indicate the position on a regular spaced one-dimensional grid, w
amine the initial evaluation ofr at the cell centers adjacent to the discontinuity (points
and 1). Using the above finite differencing scheme, one can confirm that at point 0
evaluation ig(¢1 — ¢o)/Ay|. At point 1, the initial evaluation of is also|(¢1 — ¢g)/AY].
Thus, the boundary values @b j specified at points on either side of the discontinuit,
define a single value for the slope #dthrough the zero level which is consistent with the
values ofg fixed at the adjacent points.

The time discretization of Egs. (27) and (30) is accomplished by employing the sc
five-stage explicit scheme used for the flow solver [5] with a time stepping limit given
25AXAyY/(AX + Ay). Figure 9 shows the one-dimensioggbrofile shown in Fig. 8 after
reinitialization with this technique. As can be seen, the reinitialization does not affect
values adjacent to the discontinuity, but defines a smooth surfagenfoich passes through
these points.

For most cases, the reinitialization procedure converged without difficulty. Howe\
when either a local minimum fa¥ greater than zero or a local maximum §poless than zero
existed, a stable situation developed in which informatiogfandy was convected away



INCOMPRESSIBLE FLOW WITH A DISCONTINUITY 383

T T

[ ----«-- Before Reinitialization

| —e— After Reinitialization

"]

FIG. 9. Reinitialization of¢.

from these points even though no boundary conditions were specified there. To avoid
we restricted the minimum value ¢fto be greater than one-half the minimum valugrain
the boundary. One can confirm from Eqg. (27) and the spatial finite difference scheme tha
guarantees positive minimum and negative maximum decay. By using this reinitializa
process after each implicit time step, we were able to keep theface smooth and obtain
accurate results for the update of discontinuity position. This is demonstrated by the re
presented under Validation.

This defines the major changes in the incompressible flow algorithm needed to s
problems with a surface of discontinuity. At each implicit time step, the above techniq
were used to converge to an accurate prediction of the update of the flow variables
discontinuity position. We note that in the following calculations, the pseudo-time iterat
was not converged to machine order accurate steady-state solutions at each implicit
step. Instead, to save computational time, we advanced in pseudo-time until the maxil
error in each of the pseudo-time equations (three equations for the flow, agfelecreased
at least three orders of magnitude. Even two orders of magnitude convergence was er
to make the results of all of the following calculations insensitive to further iteration
pseudo-time.

VALIDATION

To validate the method, we have simulated the propagation of surface waves. T
waves occur when a light fluid is layered over a more dense fluid. Under the influenc
gravity, waves such as those seen on the surface of the ocean propagate along the ¢
of the two fluids. For the validation process, we examine periodic arrays of these wi
occurring in inviscid fluids. In this case, steady wave profiles exist which propagate wi
constant velocity. When the problem is made nondimensional using the wavenumber ar
acceleration of gravity, the wave profile and velocity can be described uniquely as a func
of a specified wave amplitudl, and the Atwood number, At (o1 — p2)/(p1 + p2). We
have obtained a description of these profiles as well as the velocity at which the w:
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propagate using the boundary integral method given in the Appendix of [2]. This informat
is used to evaluate the accuracy of the unsteady numerical simulation.

Two different test cases are studied. The first is for an Atwood number, At, of 1.0 ¢
a wave amplitude of 0.6 measured from trough to peak. This case corresponds to &
surface wave. For the free surface problem, the pressure along the surface is fixed at
velocity at the discontinuity is determined by solving the incompressible flow equatic
in the fluid, and the motion of the surface is determined by the velocity of the fluid at |
surface. Since our method is designed for flows of two fluids, we define a complemen
problem to be solved above the free surface. This problem is the incompressible flow
fluid on a moving wall. The moving wall for this problem is the free surface whose moti
is completely determined by fluid 1, the free surface fluid. The condition applied at
discontinuity for fluid 2 is then that the normal velocity of fluid 2 evaluated at the wall
equal to the normal velocity of the wall. A slip velocity is allowed between the wall a
fluid 2 such that there are no conditions on the tangential velocity of fluid 2 at the wall.

These conditions are somewhat simpler than a two-fluid problem in which there is in
action across the discontinuity. As such, we can make some simplifications in determi
the dummy values for both fluids. In the determination of the dummy values for fluid 1,
make the simplification

0
s, =diag[0 1,1] - 81 = ¢ p1us p; (35)
P11

these values are chosen since the pressure on the free surface is zero and the informat
the velocity at the free surface must come from fluid 1, not fluid 2. For fluid 2, the followil
equations are used to determsje

Py = P2
(U5, v5) - N = (Uy, vy) - N (36)

(U5, v5) x N = (Ug, v2) X N.

These equations reflect the fact that the normal velocity of the wall is determined by the
surface fluid, while the tangential velocity and pressure at the wall in fluid 2 are determi
by solving the incompressible flow equations in fluid 2. Given vakjeands,, we can
extrapolate dummy values and evaluate the derivatives near the discontinuity. The m
of the discontinuity is determined by the level-set equation Bidgual to zero.

To complete the definition of the problem we must specify initial conditions and far-fie
boundary conditions for fluids 1 and 2. Initial conditions for the flow and the surface posit
are determined using the method of [2] with 180 points describing the surface position.
fluid 1, which is the lower of the two fluids, Euler (slip) boundary conditions are applied
the bottom boundary. For fluid 2, at the upper far-field boundary a nonreflecting bounc
condition withu, v, p=0is used. This boundary condition is discussed in [5]. The dome
height was taken as/8 the wavelength of the wave with the wave at the midheight of tt
domain. At this domain height, the solution was minimally affected by increases in
height of the domain.

Figures 10a and 10b show the wave profiles calculated with the simulatiea@gnd
t =6.25 which is approximately one period later. For comparison, the steady profile shil
by ct is also shown, where is the velocity of the wave calculated to be 1.082 from th
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FIG. 10. Free surface wave profiles (a)tat 0 and (b) at =6.25.

stationary solution. The results shown were computed with an equally spaced Carte
mesh with 48 cells in th&-direction, 64 cells in the-direction, and an implicit time step
of 0.05. Qualitatively, the results agree well with the stationary solution. We make 1
comparison more quantitative after describing the second test problem.

The second test case is for an Atwood number of 0.8181 and an amplitude of 0.72.
case corresponds to an interfacial wave between two immiscible fluids. At the interfac
the two fluids, the pressure and the normal velocity are required to be continuous, and
is a slip condition for the tangential velocity. These jump conditions are implementec
follows. To determines, j,mp from s, the following equations are used:

P1jump = P2
(Ul,jumpv Ul,jump) ‘N =(Uz,v2)-N (37)

(ul,jump» Ul,jump) X N = (Ug, v1) X N.

These values are then used to deternsinas discussed in the section describing the di
continuity treatment. Gives,, s, is determined by the equations

P = Py
(U3, v5) - N = (Up, vy - N (38)

(U/z, U/z) X N = (Ug, v2) X N.

This implementation of the jump conditions reflects the fact that there is no relation betw
the tangential velocity of the fluids on either side of the discontinuity. As such, the inf
mation for the tangential velocity on either side of the discontinuity must be extrapols
from the flow on that side of the discontinuity.

The initial conditions for the problem were again determined by using the methoc
[2]. The far-field boundary conditions for this problem are the same as those used foi
previous problem. As in Fig. 10, Figs. 11a and 11b show the wave profiles at a time
and 6.25 along with the shifted stationary profile. For this case, the wave spéedqual
to 0.963. These results were calculated on & 48 mesh with a time step of 0.05. Again,
the results agree qualitatively well with the stationary solution.
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FIG. 11. Interfacial wave profiles (a) at=0 and (b) at =6.25.

ERROR ANALYSIS

To make a quantitative assessment of the accuracy of the method, we need to est
the error in the solution as a function of time. To do this, we choose the error estimate

2

et) = \/1/2nh2 (Yo(X, t) — ys(X — ct))2 dx, (39)
0

wherey is the y coordinate of the surface and is they coordinate of the stationary
solution. We chose this estimate because it is easy to calculate and because the s
position is usually the most examined result of the calculations.

Figure 12 shows the evolution of the error for the free surface problem calculatec
a 24x 32, 48x 64, and 96< 128 mesh all with the same implicit time step, 0.05. B

0.04 T T
0.03F 4
24x32 mesh
)
LE 0.02f E
0.01f 1
I 48x64 mesh_—
| 96x128 mesh |
CO b 2n

t

FIG. 12. Error growth for the free surface wave.
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FIG. 13. Error growth for the interfacial wave.

comparing the slope of these curves, we can estimate the spatial order of accuracy ¢
scheme. Fitting lines to these curves, we find that the ratio of the slopes is approxim:
1/4 when moving to a finer mesh. The actual values are 0.20 and 0.29. Therefore
convergence is approximately second-order accurate in space. We have performed a s
analysis on the interfacial wave problem. The error growth for this problem is showr
Fig. 13. For this case we have presented results for both an implicit time step of 0.05
0.025 to ensure that time discretization was not significantly affecting the growth of
error. First, we see that the slopes of the curve for each grid size are approximately the ¢
which shows that the growth rate is predominately determined by the spatial discretize
error for these time step sizes. Second, if we compare the slopes of the curves found
equal time step size, we find that the ratio of slopes as the grid size is doubled is &
approximately 14. The values are 0.21 and 0.30 fat =0.05 and 0.21, and 0.20 for
At =0.025. Thus, for inviscid problems, we can achieve second-order accuracy. We \
not able to validate the method for any problems with viscosity, because all of the visc
solutions which were available for comparison had jump conditions which were a func
of the spatial derivatives of the flow variables at the surface of discontinuity.

To justify our statement that the error with this approach is much less than that «
continuum method, we compare the order of convergence of this approach to that give
a continuum method. In [23], a convergence study was done for the simulation of a ri
bubble using the continuum approach. The order of convergence given for the error il
length of the minor axis of the bubble, an error measure similar to that used in this pe
is approximately 1.6. If we consider that this value was obtained by decreasing bott
grid size and the time step simultaneously, it is reasonable to estimate the spatial orc
accuracy as only somewhat greater than unity. For our approach, if we use from the pre
paragraph the value 0.21 as a typical value for the ratio of the errors on successive me
we estimate the spatial order of accuracy a®.B)/In(1/2) =2.25. This comparison
is not completely fair because the problem studied in [23] had the additional compl
tions of surface tension and viscosity. In the next paragraph we will provide further ar
ments showing that this approach is more accurate than a continuum method for inv
flows.



388 HELENBROOK, MARTINELLI, AND LAW

0.05_ T T
0.04F
[ local evaluation of
the scalar velocity
5 0.03F -
5 I
g |
0.02+ _
0.01p average with dummy
value evaluation
OO T 27

t

FIG. 14. Dependence of the error growth on the evaluation of the scalar velocity for the interfacial wi
problem on a 4& 64 mesh withAt = 0.05.

To demonstrate the importance of accurately resolving the peak in the normal veloci
the scalar field shown in Fig. 7, we examine the error growth when the normal velocit
evaluated by averaging the local and dummy values at the points adjacent to the disconti
versus the case where we simply use the local values. The results $00.8181 were
recalculated on the 48 64 mesh using only the local scalar velocity at each point |
determine the update far. In Fig. 14, the error in these results is shown along with th
error obtained using the averaging technique. From this figure, we see that a local evalu
of the scalar velocity causes a much larger error. By using the averaging technique, we :
this error and achieve second-order accuracy. From Figs. 7 and 14, we also argue th
error obtained using a continuum method for this problem would be of the same orde
or larger than the error obtained using the local values only to evaluate the normal s
velocity. This argument is based on the fact that if an artificial smoothing width is introdut
into Fig. 7, we obtain a scalar normal velocity profile similar to that shown in Fig. 15.
the smoothed profile, there is an error in the prediction of the interface velocity whicl
proportional to the smoothing width. This error is similar to that which results by usi
the local velocity only to calculate the scalar normal velocity, and thus the error usin
continuum method will be of the same order or larger depending on the number of grid
over which the discontinuity is smoothed.

Finally, to investigate the importance of reinitializing the scalar surface, we have re
culated the results for At 0.8181 without reinitializing the surface after each implicit time
step. The error on the 4864 mesh without reinitialization along with the previous resu
is shown in Fig. 16. Initially the results agree, but as time progresses the scalar sul
becomes convoluted, resulting in the rapid increase in the error which occurs at later ti
Also in Fig. 16, results are shown using 10 reinitialization time steps as opposed to tl
time steps used in the previous calculations. The results for the two cases are nearly |
tinguishable, and thus 5 time steps is enough to ensure that the results are indepenc
the reinitialization process.
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FIG. 15. Profile of the normal velocity of the scalar field showing the effect of smoothing in a continut

approach.

PREMIXED FLAME PROPAGATION

As a demonstration of the versatility of the computational method and to provide sc
groundwork for our future studies, we present the implementation of our method and
results of two calculations for the premixed flame propagation problem. The results ve
the accuracy of the implementation and in addition demonstrate that our technique c:
used for viscous flows and for more convoluted and dynamic surfaces than in the pre\

test cases.

In many combustion devices, the scale of the flow is much larger than the flame thickr
In this limit, a premixed flame can be approximated by a discontinuity in the flow fie

0.04

0.03f

Error
=
o
£

0.01F

no reinitialization

5 iterations
10 iterations

27

FIG. 16. Dependence of the error growth on the reinitializatiorpdbr the interfacial wave problem on a

48 x 64 mesh withAt =0.05.
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Asymptotic analysis [17] has shown that to first order in the ratio of the flow scale to
flame thickness, the following jump conditions describe this discontinuity:

1 1
oL 1)
P2 pP1

Up — Uy = —nxm(l — 1) (40)

(=)
v — V2 = —Nym{ — — — |;
P2 p1

here the subscripts 1 and 2 refer to the unburned and burned gas, respattisehg mass
burning rate of the flame; and the scagars initialized so that the normal as defined by
Eqg. (21) points toward the burned gas. These conditions reflect the requirements that
and momentum are conserved across the flame and that the velocity tangent to the
does not change across the discontinuity. The analysis also showed that the discont
propagates along its normal relative to the unburned flow with a spead of, which
reflects the fact that the flame is consuming unburned fluid. To implement this numeric
m/p was used for the spee§, in Eq. (20). Although this speed is discontinuous across tt
surface, when combined with the discontinuity of the flow variables at the surface, it def
aC? continuous velocity for the scalar normal velocity, v) - n — m/p, which propagates
the flame with a speed o/ p; relative to the unburned gas.

To close the problem, the mass burning rate and the density jump across the flame
must be specified. These parameters are determined by the chemical and diffusive e
which occur within the flame. To leading order,and the jump in density across the flame
are independent of the flame shape and flow velocity [17]; therefore we can specify con:
values for both to describe a specific fuel. Typical values for a hydrocarbon such as met
mixed in stochiometric proportions with air are approximate8% g/cnt s ando; /pp = 7.

In our calculations, we make the flow velocities nondimensionahpy,, which reduces
the number of independent variables by one. Witho, specified, the problem is closed
and we can proceed with the calculations.

To verify the accuracy of the flame implementation, we compare the computatic
solution to the analytic solution for the Landau—Darrieus instability [15]. For the first-orc
flame approximations given above, this solution shows that perturbations to a planar fl
grow exponentially with a growth rate, of

1/2
14 <1+pl—pz) ] (41)

km

w =
p1+ P2

P2 pP1

wherek is the wavenumber of the disturbance. Figure 17 shows the amplitude growth
sinusoidal perturbation to a planar flame for various values g, calculated for both a
24 x 32 and a 48« 64 grid. The analytic solution of Eq. (41) is also shown. The analyt
and numerical solutions agree very well for both grid sizes, confirming that the simula
accurately captures flame behavior.

We have also simulated the interaction of a flame sheet with a vortex. This problem
received much attention since it can give insight into turbulent flame dynamics. Previ
examinations of the problem have either treated the flame as a passive surface neglecti
gas expansion which occurs across the flame [1, 11, 13, 27, 28] or studied vortices w
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FIG. 17. Perturbation amplitude versus time for various density ratio premixed flames.

were on the same scale as the flame thickness, which reduces the resolution requirem
the problem [19, 22]. With our method, since we do not need any points to resolve the fl
structure, we can more accurately and efficiently capture the dynamics of the interax
when the scale of the viscous vortex is much larger than the flame thickness.

To perform the simulation, rather than using a constant burning rate which is unst
to all wavelengths of disturbance, we use a burning rate which has a dependence c
curvature

m=1+448V - (ny, ny). (42)

Equation (42) is a heuristic representation of the effect of the flame thickness on the
burning rate; therefor&should be of the order of the width of the flame relative to the flo
scale. This effect damps the growth of small scale instabilities, allowing the problem tc
resolved on the numerical grid. Physical scaling arguments reved &mat the Reynolds

number are related through the Prandtl number§ Rel/Pr. Thus for the vortex problem,

since Pris always near unity, the Reynolds numbeaard notindependent. For the results
we presentd was taken to be 0.1, and the Reynolds nhumber was calculated using a Pr:
number of 0.7. The jump in viscosity across the flame which occurs due to heat rel
in the flame is determined by the relationship between kinematic viscosity and densi

constant pressure

V1 P2 32

==(=) . (43)
V2 (,01)

The pressure can be assumed constant to determine this relation because the probl
studied was unconfined and in the low Mach number approximation. Under these condit
to first order the pressure is constant in an expansion in powers of the Mach number.
completes the definition of all the parameters in the problem.

To initiate the flame—vortex interaction, a potential solution for a vortex was added to
solution for a planar flame. For the test case we studied, the circulation of the vortex
15. A schematic of the initial conditions and boundary conditions is shown in Fig. 18
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FIG. 18. Schematic of the grid and the initial and boundary conditions used for the flame—vortex probler

constant inlet velocity of 1.0 was used so that the flame did not propagate out of the dor
At the exit, the pressure was fixed at zero, whiledtamdv velocities for the boundary were
extrapolated from the interior of the domain. Calculations were performed onxe648
mesh with the cells compressed near the center of the domain for higher resolution o
flow features near the flame surface. All of the extrapolations for the dummy cells w
doneini, j coordinates so that no modifications were needed to accommodate the vari
of the mesh spacing.

In Fig. 19, flame profiles from this calculation are shown for every 10th implicit time st
where the implicit time step was 0.075. The initial point vortex decays due to viscosity

8n/3, T

2 1
4n/.,0 T 2n

FIG. 19. Flame contours for the flame—vortex problem.
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FIG. 20. Cross section of the flow variablesyat 7 andt = 3.75.

it approaches the flame, but still has enough strength to cause a significant convolutit
the flame surface. Our method for the treatment of the discontinuity was able to handl
flame geometry shown in Fig. 19 with no noticeable change in the quality of the solut
Figure 20 shows a vertical cross section of the flow variables with dummy valuesaf4
andt = 3.75. The solution is captured without any smoothing or oscillation near the c
continuity. This gives not only greater accuracy, but also a clearer picture of the dynatr
of the flow near the discontinuity.

CONCLUSIONS

We have developed an accurate method for solving 2-D incompressible flow probl
with an internal discontinuity surface. This method addressed three issues associatec
these problems: the solution of the incompressible flow equations, the treatment o
discontinuity in flow variables at the surface, and the tracking of the surface as it mc
within the domain. Results and analysis have shown that for inviscid problems, the me
is spatially second-order accurate. The calculations also showed that the method was
versatile inits ability to handle a variety of different jump conditions such as those descrit
a free surface, an immiscible fluid interface, and a premixed laminar flame.

The main limitation of the method is that the jump conditions cannot be a function of
spatial derivatives of the flow variables at the discontinuity. To handle these jump conditi
estimates for the spatial derivatives must be extrapolated to the surface of discontinuity
the outer flow. On a fixed mesh, it is difficult to perform these extrapolations for mod
ately convoluted surface geometries. A natural extension of this method is to implen
the technique on an unstructured mesh which moves with the discontinuity. In this way
stencil of points near the discontinuity would remain fixed, allowing the derivative inft
mation to be extrapolated more easily. A moving unstructured mesh formulation has |
recently implemented for inviscid free surface problems [16]. By combining the technig
given here and those of [16], it may be possible to solve two-fluid viscous problems v
accurately.
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FIG. 21. Schematic describing the movement between the coarse and fine mesh.

APPENDIX: MULTIGRID WITH A DISCONTINUITY

The acceleration of convergence to steady state by the multigrid technique is cruci
the efficiency of the incompressible flow algorithm. However, it is beyond the scope of 1
paper to describe the full details of the technique. A detailed description can be foun
[5]. Here, we focus on the changes needed to accommodate the surface of discontinu

There are basically three steps in the multigrid technique. In the first step, an estir
of the solution and the error in the solution as defined by Eq. (7) is transferred to a coc
mesh. This is normally done with a straightforward volume average. The first schemat
Fig. 21 shows a typical stencil of fine mesh cells used in the volume average for a co
mesh cell. To transfer the discontinuous solution, we use a slightly altered volume avel
This is given by the equations

4 4
¢’c = Z Vn¢n Z Vh (44)
n=1 n=1

4 4
We = Z Vhl(sign(¢n) + sign(¢c))wn + (Sign(¢n) — Sigm¢c))dn]/22 Vi, (45)

n=1 n=1

whereV, is the volume of the fine mesh cells 1-4 shown in Fig. 21 vanandd,, are the flow
values and dummy values for those cefis.andw, are then the volume-averaged value
on the coarse mesh cell. By avoiding an average which wsedues from both sides of
the discontinuity, a solution on the coarse mesh is produced which retains its discontin
nature. In addition, because the average is based on the gigmdhe fine and coarse mesh
cells, the flow values on the coarse mesh are consistent with the side of the disconti
that the coarse cell center is on as determined by the valgi@nfthe coarse mesh.

The volume average used to transfer an estimate of the error cannot be done in a si
manner because there are no dummy values of the error. Instead, we volume averag
only those fine mesh cells which have the same sigh &g the coarse mesh cell,

4 4
Ec =) EnVa(Signign) + Sign(@c)) / D Va(sign(gn) +signigc)),  (46)

n=1 n=1

wherekE; is the error at the coarse mesh cell dhgdis the fine mesh error. We avoid any
coupling of the error across the surface in the average to be consistent with the philos
of subdividing the numerical domain into two distinct computational regions.
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The next step in the multigrid technique is to perform an update of the solution on
coarse mesh in a manner analogous to that used on the fine mesh. This can be accomj
by using all of the same techniques for handling the discontinuity as were used on the
mesh since the solutions on the coarse and fine mesh have a similar discontinuous forn
only difference in the update is that the error used to drive the pseudo-time update, Eq
is determined by using both the error transferred from the fine mesh and the error evall
using the coarse mesh solution. A discussion of this can be found in [5]. We remark
although¢ is transferred to the coarse mesh, this is only for the purpose of determir
the position of the discontinuity for the update of the flow solution on the coarse mesh.
updates ofp are performed on the coarse mesh.

The final step is to use the change in the solution on the coarse mesh to define a cha
the solution at the fine mesh points. This is accomplished by using a bilinear interpols
between the change in solution of the four cells on the coarse mesh which are nearest
fine mesh cell for which we are finding a correction. A schematic of this is also showr
Fig. 21. This method is adapted to the region near the discontinuity in a manner simil:
that used to move the solution to the coarse mesh. If the signoafthe coarse and fine
meshes are the same, the change in the solution on the coarse mesh is used for the
interpolation. If the signs are opposite, the change in the dummy value of the solution o
coarse mesh is used. This defines the update of the solution on the fine mesh, comp
the description of the modifications to the multigrid method. The remainder of the met
is completely analogous to that described in [5].
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